Summary of results: which methodology/modality “wins?”
Vanilla | Merged | ||||||||
Algorithm | Speed | CCI % | ROC AUC | RMSE | F-1 | CCI % | ROC AUC | F-1 | RMSE |
ZeroR | Instant | 37.9333 | 0.4990 | 0.4144 | NULL | 47.1000 | 0.4990 | NULL | 0.4536 |
OneR | Instant | 43.0000 | 0.5420 | 0.5339 | NULL | 52.9833 | 0.5660 | NULL | 0.5599 |
NaiveBayes | Fast | 63.8500 | 0.8160 | 0.3808 | 0.6410 | 63.9667 | 0.8000 | 0.6430 | 0.4374 |
IBK | Fast | 56.5333 | 0.6910 | 0.4386 | 0.5230 | 59.5833 | 0.6510 | 0.5470 | 0.4972 |
RandomTree | Fast | 59.5833 | 0.6800 | 0.4474 | 0.5920 | 62.7167 | 0.6700 | 0.6210 | 0.4954 |
SimpleLogistic | Moderate | 73.6500 | 0.8850 | 0.3065 | 0.7320 | 73.6500 | 0.8730 | 0.7300 | 0.3502 |
DecisionTable | Slow | too slow for viable computation on consumer-grade hardware | |||||||
MultilayerPerceptron | Slow | ||||||||
RandomForest | Slow | ||||||||
Vanilla | Merged | ||||||||
Meta-Classifier | Speed | CCI % | ROC AUC | RMSE | F-1 | CCI % | ROC AUC | F-1 | RMSE |
Stack (ZR, NB) | Moderate | 37.9333 | 0.4990 | 0.4144 | NULL | vacuous results, omitted | |||
Stack (NB. RT) | Moderate | 63.7000 | 0.8230 | 0.3795 | 0.6350 | 61.9833 | 0.6980 | 0.6130 | 0.4523 |
Vote (ZR, NB, RT) | Moderate | 62.0833 | 0.8430 | 0.3414 | 0.6110 | 64.0500 | 0.8330 | 0.6260 | 0.3830 |
CostSensitive (ZR) | Instant | 37.9333 | 0.4990 | 0.4144 | NULL | 36.6667 | 0.4990 | NULL | 0.4623 |
CostSensitive (OR) | Instant | 42.7000 | 0.5400 | 0.5353 | NULL | 39.6167 | 0.5170 | NULL | 0.6345 |
CostSensitive (NB) | Fast | 63.8500 | 0.8160 | 0.3808 | 0.6410 | 64.0833 | 0.8010 | 0.6450 | 0.4365 |
CostSensitive (IBK) | Fast | 56.5333 | 0.6910 | 0.4386 | 0.5230 | 59.5833 | 0.6510 | 0.5470 | 0.4972 |
CostSensitive (RT) | Fast | 59.5833 | 0.6800 | 0.4474 | 0.5920 | 63.3833 | 0.7050 | 0.6350 | 0.4728 |
CostSensitive (SL) | Moderate | 73.6500 | 0.8850 | 0.3065 | 0.7320 | 74.7833 | 0.8780 | 0.7450 | 0.3478 |
My results are contained in a separate text file in lab journal format. Salient results consisted of:
Continue reading “Summary: Machine Learning on the Rosanne-ABC Firing Incident Dataset”